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Review from Last Time

1 The Logrank test: H0 : S0(t) = S1(t) without making
parametric assumptions. Strati�ed variants enables
control of a few discrete confounders.

2 Regression modelling of the e�ects of covariates, X , on
the survival experience can be done under the
assumption of proportional hazards
h(t |X ) = h0(t) exp(�X ).

3 The Cox partial likelihood is the basis for estimation and
inference on �.
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Presentation Overview

1 Cox Partial Likelihood

2 More on the Cox Model

3 Model Selection
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Overview of Cox Regression

Goal of regression: develop and estimate a meaningful
model relating a set of explanatory variables (covariates) X

and an outcome.

Cox PH regression: assumes covariates modify the underlying
baseline hazard proportionally (baseline hazard treated as a
nuisance).

h(t |X ) = h0(t) · exp(�X )
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Partial Likelihood
Suppose we want to estimate the survival di�erence
between two groups (z = 0, 1) using a Cox model: assuming
h1(t) =  h0(t) with  = e�z .

Suppose we have a set of n in the risk set R1. Suppose
participant i failed at the �rst failure time t1. The probability
that this happened is given by

p1 :=
hi(t1)P

k2R1
hk (t1)

=
 i h0(t1)P

k2R1
 kh0(t1)

=
 iP

k2R1
 k
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Partial Likelihood

p1 :=
hi(t1)P

k2R1
hk (t1)

=
 i h0(t1)P

k2R1
 kh0(t1)

=
 iP

k2R1
 k

The baseline hazard cancels out in the above expression.

At second event time t2, there are n� 1 people in the risk set,
R2. Suppose person j fails. The probability this occurred was

p2 :=
hj(t2)P

k2R2
hk (t2)

=
 jP

k2R2
 k
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Partial Likelihood

We can calculate p1, p2, . . . , pT for all the T event times. Then
the partial likelihood of the observed data is the product
L( ) := p1·, p2 . . . pT .

In the partial likelihood, the baseline hazard h0(t), which
describes the potential of experiencing the event in group
z = 0, is treated as a nuisance – a statistical quantity not of
direct interest.
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Cox Model
The Cox model assumes the conditional hazard satisi�es

h(t |X ) = h0(t) exp(�
T

X )

X 2 Rp is a vector of p explanatory variables (covariates) and
� is the vector of log hazard ratios.

The Cox partial likelihood provides the basis for estimation
and inference on �.

L(�) =
DY

j=1

h0(tj) exp(�
T Xj)P

k2Rj
h0(tj) exp(�T Xk )

=
DY

j=1

exp(�T Xj)P
k2Rj

exp(�T Xk )
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Check your understanding

Suppose we are planning a randomized trial to evaluate
whether a vaccine is better than placebo in preventing �u
infection. Brainstorm with your neighbors regarding a
reasonable method to analyze the data that would come out
from the trial.

1 Estimation versus testing?
2 Validity of PH assumption?
3 Missingness assumptions?
4 Adjustment for other explanatory factors?
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Switching between survival quantities w/ Cox Model
Recall we can estimate the baseline hazard under a Cox model using a
Nelson-Aaelen-type estimator

ĥ0(ti) =
diP

j2Rj
exp(xj �̂)

Where di is the number who experienced the event at time ti and the
denominator is the number at risk while controlling for covariates xj .

The baseline and conditional survivor curve can be estimated as

Ŝ0(t) = exp

✓
�
Z

t

0
ĥ0(u)du

◆

Ŝ(t |x) = [Ŝ0(t)]
exp(�̂T

X)
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Ties

Recall that the Cox partial likelihood we discussed so far
requires a unique order of event times.

However, in practice, there may exist ties in event times due
to (a) coarse measurement of a continuous time process or
(b) truly discrete event times.
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Method 1 of Tie Handling: Continuous

Idea: if event times are truly continuous, average over all possible
unique orderings of tied failure times.

E.g., suppose that at the �rst event time t1, there are A treated
(X = 1) subjects and B control (X = 0) subjects at risk. One treated
and one control participant experience the event tied at t1. The
factor in the partial likelihood will be

p1 :=

✓
1

Ae� + B

◆✓
e�

Ae� + B � 1

◆

| {z }
Control First

+

✓
e�

Ae� + B

◆✓
1

(A � 1)e� + B

◆

| {z }
Treated First
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Method 1 of Tie Handling: Discrete

Idea: if event times are truly discrete, compare observed hazard
to sum of hazards over all possible tie combinations.

E.g., suppose that at the �rst event time t1, there are A treated
(X = 1) subjects and B control (X = 0) subjects at risk. One treated
and one control participant experience the event tied at t1. The
factor in the partial likelihood will be

p1 :=
e� · 1P

i2Rt1

P
j2Rt1 :j>i

 i ·  j
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Need for Alternatives
When there are many ties, enumerating all combinations of event
times becomes computationally prohibitively expensive.
Shortcuts are needed.

Breslow approximation: adjusts both terms in the marginal method
such that they have the same denominator.

p1 :=

✓
1

Ae� + B

◆✓
e�

Ae� + B � 1

◆

| {z }
Control First

+

✓
e�

Ae� + B

◆✓
1

(A � 1)e� + B

◆

| {z }
Treated First

⇡
✓

e�

(Ae� + B)2

◆
+

✓
e�

(Ae� + B)2

◆
=

✓
2e�

(Ae� + B)2

◆

Ethan Ashby

Lecture 5



Cox Partial Likelihood More on the Cox Model Model Selection

Need for Alternatives

Efron method: each participant has an equal probability of
being at risk in second denominator

p1 =

✓
1

Ae� + B

◆✓
e�

(A � 0.5)e� + B � 0.5

◆

This is the tie-handling method used by default in R.
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Importance of Model Selection

The Cox model represents a powerful tool for estimating
and inferring the association between a covariate and
survival time.

In practice, we may collect data on several covariates, which
may/may not be explanatory of the survival experience.
How do we develop a model that is both

1 parsimonious enough to preserve power to detect true
associations

2 Complex enough to be meaningful and eliminate
obvious sources of confounding
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Partial Likelihood Ratio Test

Suppose we are interested in testing whether a covariate X1
belongs in the Cox model. This is the case of nested models.
We can calculate the log partial likelihood of the data for a
Cox model with the covariate X1 (full model) and without the
covariate (reduced model).

2 [`Full � `Reduced] ⇠ �2
dim(X1)
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AIC for non-nested models
Suppose we are interested in sorting through a large collection of
covariates to obtain a parsimonious model.

We can pursue a stepwise procedure that adds/subtracts
variables one-by-one with the goal of optimizing a criterion
function such as the Akaike Information Criterion (AIC).

AIC = �2`(�̂) + 2k

where `(�̂) is the log partial likelihood at the MPLE and k is the
number of parameters in your model.

AIC balances the model �t and model complexity, identifying a
“good-�tting” model with few parameters.
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Stepwise selection in R

1 modelAll . coxph <� coxph ( Surv ( t t r , relapse ) ˜ grp +
gender + race +employment+yearsSmoking+
levelSmoking+ ageGroup4 + priorAttempts +
longestNoSmoke )

2 resu l t . step <� step ( modelAll . coxph , scope= l i s t ( upper
=˜ grp + gender + race + employment +
yearsSmoking + levelSmoking + ageGroup4 +
priorAttempts + longestNoSmoke , lower=˜grp ) )
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Handling Nonlinearity

Recall that including continuous covariate X in a Cox model
implies the hazard grows linearly in X .

In many cases, we may wish to model the e�ect of a
continuous covariate X that may a�ect the hazard
nonlinearly.

An appealing solution are splines, piecewise polynomials
stitched together at support points called knots.
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Handling Nonlinearity

Splines will improve the �t of the model by introducing
additional �exibility. We turn to a penalized partial likelihood
approach for estimation and inference, where a penalty is
paid for a more complex spline curve.

1 modelAll . coxph <� coxph ( Surv ( t t r , relapse ) ˜ grp +
employment+pspl ine ( age , df =4) )
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Handling Nonlinearity
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